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INTRODUCTION:

¢-Myc and breast cancer:

Amplification of the c-myc gene has been reported in as many as 20-30% of
sporadic breast tumors, and may be associated with a relatively poor prognosis (Escot
et al., 1986; Watson et al., 1993). Of perhaps even greater significance is the
observation that constitutive expression of c-Myc predisposes mammary tissue to
carcinoma (Schoenenberger et al., 1988; Stewart et al., 1984), as is the case in many
other cell lineages (Leder et al., 1986). The potential implications of uncontrolled c-
Myc expression are further illustrated by the finding that it can allow cells to become
transformed without an accompanying mutation in the tumor suppressor gene p53 (Lu
et al., 1992), abnormalities of which are associated with both sporadic and hereditary
breast cancer (Harris et al., 1992). An investigation of c-Myc function is therefore
relevant to breast cancer not only because of its specific association with mammary
carcinoma, but also because activation of the cellular regulatory networks in which it is
involved seems in general to contribute to oncogenesis. These observations suggest
that c-Myc will be a promising target for development of future antineoplastic therapies
which are designed specifically to inhibit its function.

To generate such molecularly-based therapies, it will be important not only to
identify cellular factors that c-Myc activates (and is activated by), but also to
understand the specific molecular interactions involved. In this project, we have
begun to address this last issue. Using structural information as a guide, we are
identifying particular protein-protein and protein-DNA interactions that are essential for
the function and target specificity of helix-loop-helix proteins, including c-Myc. A
detailed understanding of these intermolecular interactions is essential for an
understanding of c-Myc biology and necessary for design of therapeutics.

c-Myc as a transcriptional regulator:

Evidence suggests that c-Myc is involved in regulating progression through the
cell cycle (Jansen-Durr et al., 1993; Luscher and Eisenman, 1990). In the mouse, both
the c- and N-Myc genes are essential for development, but either can be disrupted
without impairing the viability of individual embryonic stem cells (Charron et al., 1992;
Davis et al., 1993; Moens et al., 1992; Sawai et al., 1993; Stanton et al., 1992). These
latter findings demonstrate that Myc proteins are not parts of the essential cell cycle
machinery, and suggest instead that they transmit proliferative signals to it. Indeed, c-
Myc seems to interact with multiple cellular signalling pathways, as is indicated by the
apparent complexity of its transformation-inducing capability (Lu et al., 1992; Sawyers
et al.,, 1992), and by the observation that in cells which have been deprived of growth
factors, expression of c-Myc can induce apoptosis (Evan et al., 1992; Neiman et al.,
1991). Apparently, c-Myc is part of a regulatory network that induces apoptosis if the
cell is receiving mixed or inappropriate signals regarding whether to proliferate (Shi et
al., 1992). Thus, while over-expression of c-Myc appears to contribute to cellular
transformation by inducing proliferation (Luscher and Eisenman, 1990), the pathways
by which it does so seem to be complex.

An essential insight into how ¢-Myc might perform these functions has come
from the realization that Myc proteins are members of the basic-helix-loop-helix
(bHLH) family of DNA-binding proteins (Figure 1) (Davis et al., 1987; Murre et al.,
1989). In general, members of this large family are involved in transcriptional
regulation, with some playing a role in cellular differentiation, and others implicated in
oncogenesis (Weintraub et al., 1991). They are defined by the HLH domain (Murre et
al., 1989; Murre et al., 1989), which allows them to form dimers, and by a region of
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basic amino acids (BR) which lies immediately N-terminal to this domain and through
which they bind to specific DNA sequences (Davis et al., 1990; Voronova and
Baltimore, 1990). Myc proteins belong to a bHLH subgroup (bHLH-ZIP proteins) in
which a "leucine zipper" (ZIP) domain (Landschulz et al., 1988) is located immediately
C-terminal to the HLH domain (Blackwood and Eisenman, 1991), and provides a
critical contribution to dimerization (Beckmann and Kadesch, 1991; Davis and
Halazonetis, 1993; Ferre-D' Amare et al., 1993; Fisher et al., 1991; Halazonetis and
Kandil, 1992; Ma et al., 1993). ZIP domains form an amphipathic a-helix that
dimerizes as a coiled-coil (O'Shea et al., 1989), and thus also define a separate family
of transcriptional regulatory proteins (the b-ZIP proteins) (Johnson and McKnight,
1989). bHLH proteins must form dimers to bind to DNA (Davis et al., 1990; Voronova
and Baltimore, 1990), and generally recognize sites that contain the palindromic
consensus CA -- TG (Lassar et al., 1989), with each respective BR binding to half of
the site (Blackwell and Weintraub, 1990; Ferre-D' Amare et al., 1993). Some bHLH
protein family members readily form homodimers, but others do not, and appear to
require a different dimerization partner (Weintraub et al;, 1991). For example, while
Myc protein bHLH-ZIP domains can bind DNA in vitro as homodimers (Alex et al.,
1992; Blackwell et al., 1990; Kerkhoff et al., 1991; Ma et al., 1993), they dimerize (and
thus bind DNA) far more efficiently as heterodimers with Max, a widely-expressed
bHLH-ZIP protein (Blackwood and Eisenman, 1991; Prendergast et al., 1991) which is
required for their capacity to transform cells, and appears to be essential for their
normal functions (Amati et al., 1993; Blackwood et al., 1992; Kato et al., 1992;
Mukherjee et al., 1992; Prendergast et al., 1992; Wenzel et al., 1991).

basic helix 1 loop helix 2
Fumon E12 RERLKVRDENEAFKEL6RMCQ -~ LELN- - SEX@R TKLLELKQH
mouse MyoD _i.ér.sx;ir;__:agfgszi‘izxcms L OF ——-Nq?@jx_@_@évz
fumen c-mpe N VKERTHN Y LEEQKRNELKRSFEIAERD Qi@)----EL--ENNEKADK Y YFLkKETATILsi¢QAT
d a d a a d a d
DNA-binding Dimerization
Figure 1:

Representative bHLH domains (taken from Benezra, et al., 1990). Conserved amino acids are shaded.
Positions that correspond to the a and d positions of amphipathic alpha helices are indicated. Helix-
disrupting proline residues are circled. MyoD BR residues are numbered in the text so that the left-most
shaded R residue corresponds to 1.

By analogy to other bHLH proteins, it would be predicted that Myc proteins
would be involved in transcriptional regulation (Collum and Alt, 1990; Luscher and
Eisenman, 1990). Recent experiments support this idea (Amati et al., 1992; Amin et
al., 1993; Gu et al., 1993; Kato et al., 1990; Kretzner et al., 1992), and have suggested
the following model: c-Myc/Max and Max/Max complexes compete for the same DNA
targets, at which c-Myc/Max activates and Max/Max blocks transcription (Amati et al.,
1992; Kretzner et al., 1992). Direct repression can be achieved at these sites by
~ binding of heterodimers of Max with the bHLH-ZIP proteins Mad (Ayer et al., 1993) or
Mxi (Zervos et al., 1993). In the remainder of this report, this group of proteins will be
referred to as the Myc/Max/Mad/Mxi network, because they appear to be linked in
function by their abilities to interact with each other and to recognize common DNA
sequences. In addition to its apparent function as an activator, c-Myc can inhibit
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transcriptional initiation which is mediated by the TFII-I protein, a finding which may
explain how c-Myc appears to repress transcription of particular genes (Roy et al,,
1993). In recent years, the list of putative direct or indirect targets of the
Myc/Max/Mad/Mxi network has been growing longer, and includes proteins associated
with cell division, such as cyclins and regulators of cyclin-dependent kinase activity
(Bello-Fernandez et al., 1993; Benvenisty et al., 1992; Born et al., 1994; Daksis et al.,
1994; Eilers et al., 1991; Galaktionov et al., 1996; Grandori et al., 1996; Hann et al.,
1994; Jansen-Durr et al., 1993; Jones et al., 1996).

The two ¢-Myc regions which are indispensible for its transforming capability
(Stone et al., 1987) were later identified as its transcriptional activator and bHLH-ZIP
domains, indicating the importance of its ability to regulate transcription. Myc proteins
are remarkably conserved in these regions (Schreiber-Agus et al., 1993; Walker et al.,
1992), and can all bind to sites that contain CACGTG or CATGTG core sequences
(Alex et al., 1992; Berberich et al., 1992; Blackwell et al., 1990; Kato et al., 1992; Ma et
al., 1993; Papoulas et al., 1992), suggesting that they may have similar or overlapping
functions. However, a number of related bHLH proteins, including the bHLH-ZIP
transcriptional regulatory proteins USF, TFES3, and TFEB, can also bind to the same
sequences (Beckmann et al., 1990; Carr and Sharp, 1990; Gregor et al., 1990). All of
these bHLH-ZIP proteins contain in their respective BRs an arginine (R) residue (R13)
which is essential for recognition of these particular CA -- TG sites (Blackwell et al.,
1993; Dang et al., 1992; Halazonetis and Kandil, 1992; Van Antwerp et al., 1992), and
which directly contacts the central bases in them (Ferre-D' Amare et al., 1993). These
similarities in DNA recognition raise the issue of how Myc proteins and these other
bHLH-ZIP proteins might be able to act on different genes, and would appear to
suggest that any differences in their target specificities would necessarily be
determined by interactions with cooperating factors. Conversely, some differences in
DNA recognition have been identified among them (Blackwell et al., 1993; Fisher and
Goding, 1992; Halazonetis and Kandil, 1991; Prochownik and Van Antwerp, 1993).
For example, the ability to bind to certain "non-canonical”" sites, which are based on
variants of the CA -- TG consensus, is shared by the Myc/Max/Mad proteins, but not by
the other related bHLH-ZIP proteins, indicating that it might confer some degree of
specificity and thus be of biological significance (Blackwell et al., 1993). Such DNA
sequences have been found recently to be associated with a number of candidate
Myc-responsive genes (Grandori et al., 1996).

The relationship between DNA-binding and transcriptional regulation by ¢c-Myc
may be complex, as is suggested by the example of the bHLH protein MyoD (Figure
1). MyoD induces many cell types to differentiate into muscle (Davis et al., 1987;
Weintraub et al., 1989), and it functions as a heterodimer with members of the widely-
expressed E2A family of bHLH proteins (i. e. E12; Figure 1) (Lassar et al., 1991; Murre
et al., 1989). Mutational analyses of MyoD and of related bHLH proteins have shown
that certain BR mutations allow them to bind to appropriate DNA sequences but
interfere with their ability to activate transcription or induce myogenesis (Davis et al.,
1990; Davis and Weintraub, 1992; Schwarz et al., 1992; Weintraub et al., 1991).
These findings suggest that the MyoD BR is involved in protein-protein interactions as
well as in binding to DNA (Weintraub et al., 1991). Such a mechanism (referred to as
"positive control"; (Hochschild et al., 1983)) has been described in other families of
DNA-binding proteins (Kristie and Sharp, 1990; Lai et al., 1992; Stern et al., 1989). In
the case of MyoD, it has been proposed that appropriate protein-DNA and protein-
protein interactions are required for exposure of its transcriptional activator domain,
which appears to be "buried" within the protein when its BR is not bound to DNA
(Weintraub et al., 1991). This mechanism could potentially contribute to target
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specificity, if only a subset of MyoD binding sites were to allow binding in a
conformation which would permit these protein-protein interactions to occur, and thus
were capable of inducing transcriptional activation (Weintraub et al., 1991). Such
complex mechanisms for determining target specificity could potentially be utilized by
other bHLH proteins, including those of the Myc family. In fact, members of different
bHLH protein groups, including the Myc proteins, are characterized by particular
amino acids in their BRs for some of which no direct role in determining DNA-binding
specificity has yet been demonstrated (Ferre-D' Amare et al., 1993; Fisher et al., 1993).
The conservation of these amino acids suggests biological importance, either for as
yet undetermined effects on DNA-binding, for protein-protein interactions, or both.

bHLH protein structure:

Recent insights into c-Myc protein-protein and protein-DNA interactions present
the prospect that in the future, antineoplastic therapeutics might be designed to
interfere with them (see (Perutz, 1992)), and thus block the ability of c-Myc to regulate
transcription. The determination of structures for bHLH protein-DNA complexes
represents a major step forward in this direction. These efforts have shown that Max
forms a parallel, left-handed, four helix bundle in which the ZIP domain continues C-
terminally from helix 2, and the BR extends as an a-helix N-terminally from helix 1 as it
crosses the major groove of B-form DNA (Ferre-D' Amare et al., 1993). Recently-
determined structures for complexes of the bHLH proteins E47 and MyoD (which lack
a ZIP domain) bound to DNA has further revealed that the configuration of the HLH
domain fold is remarkably preserved between bHLH and bHLH-ZIP proteins
(Ellenberger et al., 1994; Ma et al., 1994). While these structures have demonstrated
how the HLH dimerization interface is formed, and have made predictions about
critical protein-DNA contacts which can now be tested, they also leave open a number
of questions. For example, they have not suggested roles for a number of BR residues
which do not contact bases, yet are conserved within different bHLH protein sub-
families (Benezra et al., 1990), and thus might be essential for their function. It is also
not clear why bHLH-ZIP proteins require the ZIP domain for dimerization, or what
determines the dimerization specificities of HLH domains. In addition, because these
structures were determined using isolated bHLH or bHLH-ZIP domains, they do not
address potential interactions between them and the remainder of these proteins.

Significantly, these studies do provide an essential basis for investigating such
issues by a program of integrated mutagenesis, biochemical, and molecular modeling
experiments. As a part of this research effort | have undertaken such an effort in
collaboration with Dr. Thomas Ellenberger, who is investigating bHLH protein structure
by X-ray crystallography and will incorporate our findings into further structural
investigations. Our goal is to gain insights into the specificity of these protein-DNA and
protein-protein interactions that will contribute to our understanding of the biology of c-
Myc and of other bHLH proteins, and that will thus be an essential complement to
efforts underway in other laboratories to identify Myc-responsive genes. Results from
our experiments should thus be of particular value for future efforts at “rational”
molecular design of antineoplastic therapies.

The Mastermind protein, Notch signaling, and mammary oncogenesis:

In a change of specific aim which has been approved by the Army, our second
aim is now a study of DNA binding by the Mastermind protein.

Like bHLH proteins, other BR-containing proteins generally bind to DNA as
dimers. For example, the bZIP proteins bind to DNA only as dimers, through a distinct
type of BR which also lies in the major groove (Ellenberger et al., 1992). However,
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one example of monomeric BR-DNA binding has been identified, the SKN-1 protein of
C. elegans (Blackwell et al., 1994; Bowerman et al., 1992). SKN-1 contains at its C-
terminus a BR like that of bZIP proteins, but it lacks a dimerization domain. Instead, it
binds to DNA sequence-specifically as a monomer, by means of an 85 residue domain
that places a flexible N-terminal "arm" into the minor groove of an AT-rich region, and
stabilizes the BR by means of a predominantly helical intervening region (Blackwell et
al., 1994). Only one other example has been identified of a BR that lacks a ZIP or an
HLH segment, the Mastermind (Mam) protein of Drosophila (Smoller et al., 1990).

Mam contains a BR (Figure 2), but lacks sequences that are similar to either SKN-1 or
bZIP proteins.

b ZIP
RNR AA

Y

N D mam

NR R atf-a

NR SRICR atf-2
IRKIRRRGKNRV TCR T skn-1
EXKRRIRRERN AKCR fos

Figure 2:

Alignment of the Mastermind BR with representative BRs (Smoller et al., 1990). Conserved
residues are boxed, and indicated with arrows.

Mam is relevant to breast cancer because it is required for implementation of
signaling in response to Notch proteins (Artavanis-Tsakonas et al., 1995; Smoller et
al., 1990), which have been implicated in mammary oncogenesis (see below). Notch
is a transmembrane protein which is involved in numerous embryonic signaling
events, in which cells are directed to follow or to suppress programs of differentiation.
Proteins related to Notch have been found in organisms as diverse as C. elegans and
humans, and are utilized in myriad decisions of cell fate in the developing embryo
(Artavanis-Tsakonas et al., 1995). At least in part, in both Drosophila and vertebrates,
the Notch signal appears to be effected through transcriptional activation by the
Suppressor of Hairless (Su(H)) protein, which binds to regulatory sequences at target
genes (Fortini and Artavanis-Tsakonas, 1994). Expression of a truncated Notch
protein, which lacks the extracellular domain, results in a constitutive Notch signal
(Artavanis-Tsakonas et al., 1995). Significantly, this Notch fragment has been
demonstrated to associate with DNA-bound Su(H), and thus to convert it to an
activator (Jarriault et al., 1995). It has been proposed that transduction of the Notch
signal involves proteolytic cleavage which liberates this Notch fragment, and allows it
to be translocated to the nucleus (Jarriault et al., 1995). As Mam is a nuclear protein, it
is likely to be involved in these activation events, or in the functioning of gene products
that are expressed in response to Notch signaling.

Insertion of the mouse mammary tumor virus (MMTV) into the mouse int-3 gene,
a Notch family member, results in generation of mammary cell tumors (Robbins et al.,
1992; van Leeuwen and Nusse, 1995). This transformation event appears to be
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mediated by production of a constitutively-active truncated Int-3 protein, and
expression of such a protein in mammary cells interferes with their differentiation and
results in their transformation (Jhappan et al., 1992; Smith et al., 1995). These
findings implicate activation of the Notch pathway in mammary carcinoma. Analogous
activated Notch proteins have been linked to lymphoid tumors (Artavanis-Tsakonas et
al., 1995), and have been demonstrated to cooperate with c-Myc to induce thymomas
(Girard et al., 1996). An understanding of this pathway is therefore relevant to breast
cancer, and to cancer in general.

We will attempt to identify specific DNA sequences that are bound by the
Drosophila Mastermind protein, either alone, or together with candidate cooperating
co-factors such as Su(H). These experiments will consist of in vitro selections from
random sequence libraries (Blackwell, 1995), as well as gel mobility shift assays using
sequences from candidate target genes. As these experiments yield results, we will
move on to investigation of how the newly-described Mastermind DNA-binding
domain might recognize DNA (and associated proteins), and perform cell culture
investigations of Mastermind function. These experiments will also serve as a basis
for future attempts to identify vertebrate mastermind genes.

BODY:

A. Investigation of c-Myc and bHLH protein-protein and protein-DNA
interactions.

1. Protein-protein interactions:

The dimerization specificities of ZIP domains appear to be determined by
interactions between charged amino acids which lie adjacent to their dimerization
interface (O'Shea et al., 1992; Vinson et al., 1993), and evidence suggests that
interactions between the ZIP domains of c-Myc and Max follow similar principles
(Amati et al., 1993). However, it is not understood how the dimerization specificities of
HLH domains are determined, nor is it known why the HLH domains of bHLH-ZIP
proteins such as c-Myc and Max do not dimerize efficiently, so that they generally
require the ZIP domain (see above). To address these issues, we have begun to use
bHLH protein structures that were derived by X-ray crystallography as a starting point
for mutational analyses and molecular modeling experiments.

Although in bHLH-ZIP proteins the HLH domain is not sufficient to mediate
dimerization, its integrity appears to be required for dimer formation (Davis and
Halazonetis, 1993; Reddy et al., 1992), and it is critical for orientation of the BRs
(Ferre-D' Amare et al., 1993). The HLH domain does not follow the paradigm
represented by the ZIP domain, in which hydrophobic residues that are present at
positions a and d in the helix form a dimerization interface, with the remaining residues
generally being polar (see (Ellenberger et al., 1992); Figure 1). Instead, in the HLH
domain many of the residues at the g and e positions are hydrophobic, especially in
helix 2, and the dimerization interface is in fact a core between the four helices, which
is shielded from solvent exposure (Ferre-D' Amare et al., 1993); Ellenberger, et al., in
preparation). The structure determined for Max homodimers does not suggest an
obvious explanation for how HLH dimerization specificities might be determined, but
by comparing it with other bHLH structures, it should be possible to formulate testable
hypotheses.

For example, the bHLH protein E47 forms dimers with relatively high affinity
(Sun and Baltimore, 1991). The E47-DNA complex structure which was determined
by X-ray crystallography (Ellenberger et al., 1994) has revealed that, relative to Max,
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E47 is characterized by an additional interaction between charged residues across
dimer subunits. This interaction appears to occur between a histidine (H) residue at
the end of helix 1 and a glutamic acid (E) residue near the end of helix 2 on the
opposite subunit. It involves an increase in the length of helix 1, and appears to be
potentially able to contribute significantly to dimerization (Ellenberger et al., 1994).
The structures suggest that this interaction is possible because E47 lacks a particular
tyrosine (Y) residue which is present within helix 2 in many bHLH proteins, including
bHLH-ZIP proteins (Figure 1), and which seems to present steric constraints that
prevent helix 1 from extending as far as in E47. i

In collaboration with Dr. Ellenberger, we have begun to test whether this
interaction is critical, by substituting the apparently relevant residues from E2A
proteins into MyoD, which forms homodimers poorly (Sun and Baltimore, 1991).
During the first project year, we created a series of E2A/MyoD swap mutants, of which
MD/E/YQH2VE (Figure 3) contained the most E2A residues, and would have been
predicted by modeling to undergo the interaction described above. Surprisingly, this
protein bound DNA at a level slightly lower than wild type. During the past year we
created the mutant MD/E2/YQH2VE (Figure 3), in which the entire E47 loop region
was substituted into MyoD. This protein also formed dimers with an affinity that was
only approximately the same as wild type. These results indicated that these
substitutions did not allow the interaction described above to take place, or perhaps
that the binding energy derived from it was overcome by negative effects associated
‘with combining these particular MyoD and E2A residues.

basic helix1 loop helix2
MyoD
108 125 137 146 166

MD/E/YQH2VE

TSSHLKSNQR

S$135 V158 E163
MD/E2/YQH2VE : G

/

SQMHLKSDKAQT

MyoD HLH mutations. The basic region, helices 1 and 2, and the loop region
are indicated by differently shaded boxes. Site-directed substitution mutants are
indicated by the standard one-letter amino acid code. Numbering is according to the
sequence of full-length MyoD. Substituted residues are indicated in bold type.

2. Protein-DNA interactions:

Fortunately, our investigations of bHLH protein-DNA interactions have met with
more success. We have begun by looking at the bHLH protein MyoD, the functional
capabilities of which have been studied most extensively (Davis and Weintraub,
1992). We are investigating how certain residues affect binding preferences at
positions internal to and flanking the CA -- TG consensus, in particular those
implicated in "positive control." We are analyzing these mutants by the selection and
and amplification of binding sites (SAAB) technique of in_vitro nucleic acid selection,
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coupled with a pooled sequencing assay (Blackwell and Weintraub, 1990). In a
relatively rapid fashion, we can thus assay the consequences of mutations on DNA
binding, both by selecting preferred sequences and by selecting for pools of
sequences to which these complexes will not bind. We are then confirming the results
of these SAAB assays by analyzing binding of mutants to individual oligonucleotides.
These results are expected to lead to modeling studies, which will be employed to
design future mutagenesis efforts that, in the case of particularly definitive mutants, can
be subjected to crystallographic analysis by Dr. Ellenberger.

Various tissue-specific bHLH proteins, such as MyoD, function as heterodimers
with E2A proteins (Murre et al., 1989). These different heterodimer combinations can
then bind to different versions of the CA -- TG consensus; for example, MyoD/E2A
- proteins bind to sites with a CACCTG core (Blackwell and Weintraub, 1990), and our
experiments have now determined that heterodimers of MyoD with the bHLH protein
Twist, which is involved in mesoderm specification (see (Michelson, 1996)) bind to
CATATG sites (Figure 4). The observation that this preference is different over the
entire site, and not over just one half, suggests that different E2A partners might
recognize different sequences by positioning both bound basic regions differently on
the DNA. Substitution of the BR from E12 (an E2A protein, Figure 1) for that of MyoD
(E12basic/MyoD; Figure 4) results in a protein that will bind DNA with close to wild
type affinity as a heterodimer with E2A, but will not induce myogenesis (Davis et al.,
1990; Davis and Weintraub, 1992). Remarkably, a homodimer of this protein binds
preferentially to a CATATG site that is identical to the preferential E2A/Twist (or
Twist/Twist) recognition site (Figure 4). Back-substitution of the MyoD As and Tg
residues into E12basic/MyoD restores the ability to induce myogenesis (Davis et al.,
1990; Davis and Weintraub, 1992), and we have now shown that a homodimer of this
back-substituted protein preferentially recognizes a MyoD consensus (Figure 4). This
last result is striking in that "positive control" mutations have been identified at these
residues. Our results suggest that, although genetic evidence indicates that these
residues affect protein-protein interactions, they influence protein-DNA contact
throughout the site. Indeed, in the MyoD structure obtained by Xray crystallography,
these residues are oriented so that they point directly into the major groove (Ma et al.,
1994). The most straightforward interpretation of our results is that these residues are
involved in basic region positioning, which is in turn involved in positive control. In this
interpretation, recognition of the same site by E12basic/MyoD and Twist is not a
coincidence, but arises from analogous positioning of critical residues.

An additional MyoD residue of biological importance is K15 which, when
substituted into E12 along with As and Tg, confers the ability to induce myogenesis
(Davis and Weintraub, 1992). This K residue is located within the BR-helix 1 junction
(Figures 1 and 4). Our experiments indicate that a heterodimer of E12basic/MyoD with
MyoDbasic/E12 binds preferentially to the "Twist" CATATG site (Figure 4), again
indicating mis-positioning of the basic regions. This mis-positioning appears to be
corrected when both corresponding junctions are also substituted (E12basic-J/MD and
MDbasic-J/E12; Figure 4). These findings indicate a pivotal role for the junctions in
positioning the BRs and suggest, provocatively, that the critical K residue might be
involved. They are also consistent with the notion that the protein-protein interactions
that are implied to involve the MyoD BR might depend on proper positioning of these
BRs in the major groove, not on protein-protein interactions involving the "positive
control” residues directly.

We have now begun to test this hypothesis by looking at DNA binding by
additional mutant versions of MyoD. Substitution of multiple different amino acids into
the As and Tg positions results in molecules that lose discrimination among CA - -TG
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A. _BASIC REGIONS:
E12 QKAEREKE ANN L:
E47 EKDLRDRE ANN vV
MyoD KRKTTNAD AAT R:
twist QSFEELQT M AN 0
MUTANTS:
E12basic-J/MD [ K A
E12basic/MD [ K A
E12basic/MD-A [0 K A
E12basic/MD-AT [Q K A
MyoDbasic/E12 QKA
MyoDbasic-J/E12 QKA
B. BINDING PRFFFRENCES:
MyoD GACAGCTGTC Twist/E12 NCCATATGGN
A T
Twist NCCATATGGN
E2A NICAGGTGAN
cC E12basic/MD NCCATATGGN
MyoD/E2A GACAGGTGAN E12basic/MD-A NCCATATGGN
A cC

E12basic/MD-AT GACAGCTGTC
E12basic/MD NCCATATGGN A T
+MDbasic/E12

E12basic-J/MD GACAGGTGAN
+MDbasic-J/E12 A cC

Figure 4:
DNA binding site preferences of the indicated bHLH
proteins. In A, residues conserved among all bHLH proteins

are shaded. Numbering is as in the text. Brackets indicate
residues that were substituted from the indicated proteins.
Amino acids that are shared with MyoD are underlined in the
other bHLH proteins. In B, the CANNTG consensus is
indicated in bold type. Bases that are selected against are
indicated by underlining
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sites (not shown). Consequently, we are taking the approach of mutating non-
essential BR amino acids to alanine (Fisher et al., 1993), then swapping in
combinations of critical residues from MyoD, E2A, Twist, and other bHLH proteins. By
this approach, we will determine whether the "positioning” effects we have observed
above can be pinpointed to those residues. These mutants are under construction by
a research technician, Thip Kophengnavong. We expect that these experiments can
be extended to include molecular modeling, and to address recognition of "non-
canonical” sites by Myc-family bHLH proteins (Blackwell et al., 1993).

We have also attempted to identify a binding site for a novel Max dimerization
partner, p18 (R. Eisenman, unpublished). This bHLH-ZIP protein dimerizes well with
Max, but is not a member of either the Myc or Mad families. Heterodimers of Max and
p18 do not bind well to CACGTG sites, suggesting that they may have a novel binding
specificity. So far, we have not been successful in identifying a p18 recognition site.

Through a collaboration, we also developed a system for in vivo selection of
regulatory sequences that respond to a given transcription factor (Huang et al., ).
Sequences that allow transcriptional activation by MyoD were selected from a random
sequence library, which had been cloned into a promoter in place of a required MyoD
binding site. This promoter library was placed upstream of a p-gal reporter, allowing
FACS selection of cells that harbored active plasmids. Three rounds of selection were
performed, each of which involved co-transfection of the library DNA with a MyoD
expression vector, followed by FACS selection of cells that received an "active" MyoD-
responsive construct, then expansion of the selected DNA in E. coli. Remarkably, the
selected functional sequences represented only a subset of the allowed MyoD binding
sites, and in this system the "best" MyoD/E2A binding sites were inactive. These
findings suggest that either binding in an appropriate conformation, or binding to a
particular sequence, may be required for transcriptional activation by MyoD. These
results are of particular interest in light of the importance of BR positioning that is
implied by the experiments described above. It will be of significant interest to
investigate the basis for this finding, and to determine whether such mechanisms
might be characteristic of other bHLH proteins.

B. Investigation of DNA binding by the Mastermind protein:

In our second specific aim, we had originally proposed to use in vitro selection
to isolate single stranded nucleic acid molecules (aptamers) that could bind to c-Myc
and inhibit its dimerization or DNA binding (Ellington and Szostak, 1990). Since the
original proposal was submitted, it has become apparent that this technology is being
pursued vigorously by numerous biotechnology companies, many of which have
chemistry departments that can readily synthesize a variety of modified nucleotides
that can be used in these experiments. In light of the number and breadth of those
efforts, | have chosen to devote my Army Breast Cancer Program award strictly to basic
research, and have begun to investigate DNA binding by the Mastermind protein. It is
hoped that this research will provide novel insights into Notch function, and thus into a
pathway that is linked to mammary carcinoma.

Ms Kophengnavong has begun performing in vitro selections for Mam binding
sites, using a GST fusion protein that contains a fragment of Mam that includes its BR.
So far, we have determined that this Mam fragment binds DNA non-specifically at an
affinity of approximately 100 nM, an observation which is a promising indicator that it
may function as a DNA binding protein. We are continuing our selections to search for
a specific Mam binding site.
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CONCLUSIONS:

Our investigations of bHLH protein dimerization are as yet incomplete, because
the mutagenesis performed so far has yielded inconclusive results. However, the
structural evidence for the model under investigation is compelling. Bearing this in
mind, we will continue to pursue our test of this hypothesis by substituting successively
larger regions of E47 into MyoD. However, we have prioritized our DNA-binding
experiments, which have met with considerably more success.

Our studies of bHLH protein-DNA binding indicate the novel finding that BR
positioning may underlie recognition of different CA -- TG sites by different dimers of
E2A and its partners, an issue that has till now remained a mystery. More importantly,
this phenomenon may be linked to the biological activity of these proteins. For now we
will concentrate on MyoD, the biological roles of which have been more widely studied
than those of the Myc proteins, and on other E2A partners. We will next expand these
experiments to address how Myc proteins recognize the non-canonical sequences.

The system that we have developed for in vivo selection of functional binding
sites (Huang et al., 1996) will prove useful in a variety of areas, because it allows
identification and comparison of regulatory sites that respond to a particular protein in
“the context of different promoters and co-factors. It may ultimately prove helpful for
investigations of how Myc can activate some genes and repress others.

As indicated above, our finding that Mam binds to DNA at least non-specifically
is encouraging, and is consistent with the idea that it functions as a DNA binding
protein. These experiments, if successful, will fill in an important missing link in the
Notch pathway, which has been linked to mammary carcinoma. They will also open
the possibility of using biochemical strategies to isolate vertebrate Mam homologs.
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